Shock, Vibration, Temperature, and Humidity

Mervin Richard, Chief of Conservation National Gallery of Art November 6, 2014

Art on the Move

14,000 exhibitors

6,200,000 visitors

Crystal Palace Hyde Park, London,1851

The Big Question

Can the object be moved with Minimal risk?

Yes Go for it! No Forget it!

Agents of Deterioration

- Vibration
- Shock
- Temperature ✓
- Relative Humidity ✓
- Light

- Pollutants
- Water
- Pest
- Fire
 - Vandalism

Typical Causes of Damage During Shipment

Issue	How it causes damage
Fundamental problems	 Collision of loose object parts Collision of loose objects Collision of loose objects with the packing case Abrasion Deformation of packing case Damage during handling prior to packing/shipping
Excessive force	Inadequate shock protectionInadequate vibration mitigation

Based on information provided by Paul Marcon, CCI

Typical Causes of Damage During Shipment

Issue	How it causes damage
Lack of restraint in transit	Repetitive bouncing of cargoStacked items falling in moving vehicles
Environmental hazards	 Extreme heat or cold Extreme RH Water (e.g. rain or snow). Pests. Pollutants (poor quality packing materials)
Extreme hazards	Intentional mishandling of packages.Vehicle accidents

Based on information provided by Paul Marcon, CCI

SINUSOIDAL AND RANDOM VIBRATION

Vehicle Vibration

Air-Ride Suspension

Paul Marcon, Canadian Conservation Institute

Paul Marcon, Canadian Conservation Institute

Vibration Testing (Data Physics, Corp.)

Truck Vibration Environment

- Typically random vibration
- Higher vibration levels than aircraft
- Air-Ride Suspension is recommended
- Greatest concern
 - Low frequency vibrations with large displacements

A mechanical or physical **shock** is a sudden acceleration or deceleration caused, for example, by impact, drop, kick, earthquake, or explosion

Force = mass x acceleration

Poundal

- English unit of force
- Force to accelerate one pound at a rate of one foot per second squared
- $pdl = lb ft/s^2$

- Unit-less
- Easier to use

FOAM

EGG STRIKES BOTTOM

PROPER STATIC LOADING

Improper Static Load

Tandem Cushioning

Tandem Cushioning

Tandem Cushioning
Fragility

	Extremely Fragile	15-25 g′s	Missile guidance systems, precision aligned test instruments, plaster sculpture
	Very Fragile	25-40 g's	Mechanically shock-mounted instruments and electronic equipment, scientific instruments, x-ray equipment, some unfired clay, fragile glassware
	Fragile	40-60 g′s	Aircraft accessories, printers, most solid state electronic equipment, low-fired clay, some plaster, some glassware, some ceramics
	Moderately Fragile	60-85 g's	Aircraft accessories, computer displays, unfired clay, low-fired clay, some plaster, some glassware, some ceramics
	Moderately Rugged	85-110 g′s	Major appliances, furniture, un-cracked, brittle, canvas painting
	Rugged	110 + g′s	Table saws, machinery

Fragility

Package Weight (lb)	Type of Handling	Drop Height (in.)
0-20	1 Person Throwing	42
21-50	1 Person Carrying	36
51-250	2 Persons Carrying	30
251-500	Light Equipment Handling	24
501-1000	Medium Equipment Handling	18
1000	Heavy Equipment Handling	12

According to Fred Ostram and W. D. Godshall

- The probability of a package being dropped from a higher height is minimal.
- Most packages receive many drops at low heights while relatively few receive more than one drop from higher heights.

According to Fred Ostram and W. D. Godshall

- Unitized loads are subjected to fewer and lower drops than are individual packages.
- Most packages are dropped on their bases. In most studies, base drops have averaged over 50% of the total number of drops.
- The heavier the package, the lower the drop height.

According to Fred Ostram and W. D. Godshall

- The larger the package, the lower the drop height.
- Handholds reduce the drop height by lowering the container relative to the floor during handling.
- Labels such as *fragile* and *handle with care* have some effect but can be considered minor.

Static Load

Static Load= Mass Surface Area

Static Load

Static Load

Cushion shape not important If load is stable

Cushion Buckling

Cushion Buckling

Dynamic Cushioning Curves

Dynamic Cushioning Curves Ethafoam 220, 400, 600, 900

Compression Creep

Shock

Polystyrene

Shock

Risk in Handling

- Some materials become more brittle at lower temperatures
- Some materials become tacky at higher temperatures

Temperature-Related Damage

Temperature-Related Damage

Temperature-Related Damage

Environmental Chamber

-40° to 400° F, 10% to 85% RH (from approximately 40° to 200° F)

What Would TSA Say?

Insulating Value Of Packing Foams

Thermal Half Times Packing Cases

The ratio of the amount of water vapor in the air at a specific temperature to the maximum amount that the air could hold at that temperature, expressed as a percentage

Free Dictionary Online

Flaking Paint

Flaking Paint

Varnish Bloom

John Singleton Copley Portrait of Eleazer Tyng 1772, Oil on Canvas National Gallery of Art

Corrosion
Relative Humidity

Mold

Environmental Specifications National Gallery of Art

Temperature 70° F \pm 5° F (21° C \pm 2.5° C)

Relative Humidity 50% ± 5%

Relative Humidity 45% ± 5%

Relative Humidity 55% ± 2%

Relative Humidity 50% ± 5%

Relative Humidity $55\% \pm 5\%$

Relative Humidity $50\% \pm 5\%$ (summer) $45\% \pm 5\%$ (winter)

Proper packing can minimize variations in relative humidity

Wrap in Plastic

When Painting Equilibrated to a Relative Humidity Below 65%

Microclimate Packages

Titian Italian, c. 1490 - 1576 Cardinal Pietro Bembo c. 1540, oil on canvas Samuel H. Kress Collection, 1952.5.28

Microclimate Packages

Lorenzo Lotto - St. Catherine on Loan in Microclimte Case

Date

Lorenzo Lotto - St. Catherine on Loan in Microclimte Case

Dew Point Temperature

Temperature	50% RH	80% RH
60° F	41° F	54° F
70° F	51° F	64° F
80° F	60° F	73° F
90° F	69° F	83° F

Dew Point Temperature

Dew Point Temperature

Pollutants

Pest

Thank You for Listening

